Pages

Showing posts with label 3D Model. Show all posts
Showing posts with label 3D Model. Show all posts

Sunday, 17 July 2016

Open Source Hardware: USB-A Mounting board

while ago I tore down an old device (Can't remember if it was an old printer or something else) and found a neat little module that you could screw onto the side of a case to hold a USB-A port securely. Many designs have the USB port mounted on the main PCB but in many cases I want a USB port some distance from the main PCB which then makes it quite hard to mount it nicely.

This board, together with a quick and easy 3D printed housing, makes it a perfect solution (in my opinion anyway ;-) I've made the PCB available on thingiverse and the PCB available on OSHPark.




Get the PCB from OSHPark:

Order from OSH Park

Get the 3D Printed part from Thingiverse:

Gineer USB-a Female receptacle Case Mount

Monday, 22 June 2015

Lab Power Supply: OpAmps, Analogue Control and Digital Monitoring

I've progressed to the point where I think the second stage of the Lab Power supply is probably ready for an initial board to be made.
In this video I go through the OpAmp design, the digital monitoring, Linear control and the design of the shunt resistors in the second of three main boards in the system.

Might be time to have at least the Raw Power board manufactured so that I can progress to a stage where I can start testing the design of the second stage.

Thursday, 16 April 2015

CremaBots for sale on Tindie

I have 3 more CremaBot's and have made them all available for sale on Tindie: https://www.tindie.com/products/gineer/gineer-cremabot-v2207/

I sell on Tindie

I also uploaded a full write-up of CremaBot with the Schematic, cad designs, firmware and source code.

Let me know what you guys think and get one for yourself.

Monday, 24 November 2014

3D Delta Printer Magnetic Ball Joints Upgrade

In this video I show how I upgrade the magnetic ball joints I implemented on my Delta 3D printer to make them more stable and reliable. I then also show how I printed a 90 degree bracket which I made available and shared on Thingiverse.


Thingiverse - http://www.thingiverse.com/thing:436118
3D Modeling for 3D Printing Playlist - http://www.youtube.com/playlist?list=PLSO20OpG15P8Li0RPiHRwwYHfhVIqSMmj

Friday, 29 August 2014

3D Modelling for 3D Printing #4

In this video we go through the process of creating the bracket we created in OpenScad in SketchUp to show you the differences and some tips and trick I've picked up along the way. At the end we compare the STL file created in OpenScad with the version we create in this session.


The full playlist to view this series from the start

The Sketchup Model together with the OpenScad model is available on thingiverse.com
90 degreee Bracket on thingiverse

Sunday, 24 August 2014

3D Modelling for 3D Printing #3

In this video we finish off the OpenScad Model and start with creating the same model in SketchUp to show the comparison and some of the the required tips and trick.


The final object can be found on thingiverse.com


Below is the code which you should get to by the end of the video if you were following along.

OpenScad
/*
Created by David Taylor as part of a video series
Video are available at http://bit.ly/GineerTube
*/

include <libraries/MCAD/boxes.scad>

hw=40;
d=20;
t=5;
hr=3;
cr=2.5;

difference()
{
 union()
 {
  translate([(hw/2)-(t/2),0,0])
  {
   //cube([hw,d,t], center=true);
   roundedBox([hw,d,t],cr,true);
  }
  translate([0,0,(hw/2)-(t/2)])
  {
   rotate([0,90,0])
   {
    //cube([hw,d,t], center=true);
    roundedBox([hw,d,t],cr,true);
   }
  }
  translate([((hw/2)*sqrt(2))/2,0,((hw/2)*sqrt(2))/2])
  {
   rotate([0,45,0])
   {
    cube([hw,d,t], center=true);
   }
  }
  cube([t,d,t],center=true);
 }
 translate([(hw/4),0,0])
 {
  cylinder(h=(t*2), r=hr, $fn=100, center=true);
 }
 translate([(hw/4)*3,0,0])
 {
  cylinder(h=(t*2), r=hr, $fn=100, center=true);
 }
 rotate([0,-90,0])
 {
  translate([(hw/4),0,0])
  {
   cylinder(h=(t*2), r=hr, $fn=100, center=true);
  }
  translate([(hw/4)*3,0,0])
  {
   cylinder(h=(t*2), r=hr, $fn=100, center=true);
  }
 }
 translate([(hw/4),0,(hw/2)+(t/2)+0.1])
 {
  cylinder(h=(hw), r=(hr*2), $fn=100, center=true);
 }
 translate([(hw/2)+(t/2)+0.1,0,(hw/4)])
 {
  rotate([0,90,0])
  {
   cylinder(h=(hw), r=(hr*2), $fn=100, center=true);
  }
 }
 translate([(hw/4)*3,0,(hw/2)+(t/2)])
 {
  cylinder(h=(hw), r=(hr*2), $fn=100, center=true);
 }
 translate([(hw/2)+(t/2),0,(hw/4)*3])
 {
  rotate([0,90,0])
  {
   cylinder(h=(hw), r=(hr*2), $fn=100, center=true);
  }
 }
 translate([(hw/4)+(hw/2),0,(hw/4)+(hw/2)])
 {
  cube([hw,(hr*4),hw], center=true);
 }
 translate([(hw)-sqrt(pow(hw/8,2)-pow(t/2,2)),0,(t)])
 {
  rotate([0,20,0])
  {
   cube([(hw/4),d,t],center=true);
  }
 }
 translate([(t),0,(hw)-sqrt(pow(hw/8,2)-pow(t/2,2))])
 {
  rotate([0,-20,0])
  {
   cube([t,d,(hw/4)],center=true);
  }
 }
}

Thursday, 21 August 2014

3D Modeling for 3D Printing #2

In this video we continue working on the bracket we started in the first video and cut the screw holes by using difference and union as well as introducing libraries. This vide continues on from the first video in this series which you can find at: http://youtu.be/rUwoMPB4Lv8


Below is the code which you should get to by the end of the video if you were following along.

OpenScad
include <libraries/MCAD/boxes.scad>

hw=40;
d=20;
t=6;
hr=3;
cr=2.5;

difference()
{
 union()
 {
  translate([(hw/2)-(t/2),0,0])
  {
   //cube([hw,d,t], center=true);
   roundedBox([hw,d,t],cr,true);
  }
  translate([0,0,(hw/2)-(t/2)])
  {
   rotate([0,90,0])
   {
    //cube([hw,d,t], center=true);
    roundedBox([hw,d,t],cr,true);
   }
  }
  translate([((hw/2)*sqrt(2))/2,0,((hw/2)*sqrt(2))/2])
  {
   rotate([0,45,0])
   {
    cube([hw,d,t], center=true);
   }
  }
  cube([t,d,t],center=true);
 }
 translate([(hw/4),0,0])
 {
  cylinder(h=(t*2), r=hr, $fn=100, center=true);
 }
 translate([(hw/4)*3,0,0])
 {
  cylinder(h=(t*2), r=hr, $fn=100, center=true);
 }
 rotate([0,-90,0])
 {
  translate([(hw/4),0,0])
  {
   cylinder(h=(t*2), r=hr, $fn=100, center=true);
  }
  translate([(hw/4)*3,0,0])
  {
   cylinder(h=(t*2), r=hr, $fn=100, center=true);
  }
 }
 translate([(hw/4),0,(hw/2)+(t/2)+0.1])
 {
  cylinder(h=(hw), r=(hr*2), $fn=100, center=true);
 }
 translate([(hw/2)+(t/2)+0.1,0,(hw/4)])
 {
  rotate([0,90,0])
  {
   cylinder(h=(hw), r=(hr*2), $fn=100, center=true);
  }
 }
}

3D Modeling for 3D Printing #1

In this video I will take you through a bit of my own learning on how to use OpenScad which I am planning to make into a series where I show the benefits of using both OpenScad and higher level modelling tools like SketchUp to model different aspects such as components and full systems.


Below is the finished code for this video for those that don't want to go through the trouble of typing it all in.

OpenScad
hw=40;
d=20;
t=6;
hr=3;

translate([(hw/2)-(t/2),0,0])
{
 cube([hw,d,t], center=true);
}
translate([0,0,(hw/2)-(t/2)])
{
 rotate([0,90,0])
 {
  cube([hw,d,t],center=true);
 }
}
translate([((hw/2)*sqrt(2))/2,0,((hw/2)*sqrt(2))/2])
{
 rotate([0,45,0])
 {
  cube([hw,d,t], center=true);
 }
}

Friday, 4 July 2014

Updated Measurements

posted 14 Oct 2013 00:54 by David Taylor

Due to the fact that it is exam season (In South Africa anyway) I have not been able to do much building this weekend.
 
During a break (or two ;-) I was however able to update my sketchup model complete with a RAMPS 1.4 model to start thinking about placement. Anyway, below is the latest 3D model of what my Delta 3D printer will look like when it's done. In the image below the body work is made with Perspex (Plexy Glass) however, depending on cost and finalisation of the design, initial versions may not look quite that slick.
 
I've also done some measurements, based on the tool cartridge visible in the image above and my rods would need to be 230mm long each. I found out last week that Carbon Fiber tubes are actually cheaper than aluminium profile tubes, so guess which one's I'm planning to use.
 
With a bit of Sanding, I also got the 608 zz bearings clipped into the pulley I designed on Thingiverse and logged another build photo there: http://www.thingiverse.com/make:49800
 
Exams end after the first week in November, at which point I should be able to spend a bit more time on my Printer.